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Abstract: An intramolecular radical methodology is described as an approach to D-homoandrostanes.
The angular C-8 cyano group in tetracycle 7 derived from radical cyclization of polyene 6 serves as a latent
functional group for elaboration to the C-8 BH in d,-homoandrostane 11.
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For over a quarter of a century chemists have tried to simulate the enzymatic conversion of
squalene to terpenoids with varying degrees of success. Toward these ends the sequential cationic
cyclization of polyenes, elegantly pioneered by Johnson,! most closely parallels the enzymatic
synthesis of steroids from squalene oxide.

As suggested by the Stork and Eschenmoser hypothesis? carbocation i undergoes sequential
cyclizations through chair-like transition states to yield an all trans-tetracyclic system. In the
analogous electrophilic radical cyclization of ii, a definite preference for the 5-exo trig mode in the
second cyclization step would be expected over the desired 6-endo trig mode. Thus a radical approach
to steroids using polyenes such as ii is not feasible.

Theoretically the control of the second cyclization step to favor the 6-endo trig mode should be
realized by modification of the pro C-8 angular position (steroid numbering) in ii. We have
demonstrated that the incorporation of a pro C-8 angular methyl3 or cyano? group effectively favors the
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6-endo trig closure and that the incorporation of an «,B-unsaturated cyano moiety in the polyene
increases yields of polycycle products. As a test case, we were interested in determining if this type of
radical strategy could be extended to steroid synthesis. Herein we wish to communicate the first radical
prototype in the construction of an intact steroid nucleus and the total synthesis of d,l-
homoandrostanedione 11. The synthesis of polyene 6 and the stereoselective generation of tetracycle 7,
containing seven chiral centers, from sequential radical cyclization of 6 is detailed in Scheme 1.

Reaction of the potassium salt of cyano phosphonate 14 with aldehyde 2,3 using the conditions
developed by Takayanagi,” gave an 89:11 mixture of the 2E,6Z,10E-triene 3 and the corresponding
2E,6E,10E isomer in 90% yield. Although the mixture could be enriched in 3 after chromatography, it
was found that an easier separation could be achieved at the allylic alcohol stage. Thus subsequent
cleavage of the protecting group in 3 with MeOH in the presence of an acid afforded alcohol 4 (91%)
which upon reaction with CBr46 and Ph3P gave bromide 5 (76%).
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Alkylation of the dianion of ethyl 2-methylacetoacetate (inverse addition) with § gave tetraene 6
in 84% yield, after chromatography. Sequential oxidative free-radical cyclization?-9 of 6, as a 0.1M
solution in deacrated HOAc, with a 2:1 molar ratio of Mn(OAc)3-2H20 and Cu(OAc)2-H20 gave
stereoselectively tetracycle 710 (mp 185-186 °C; 38-45%).

In our radical approach to steroids, it was anticipated at the beginning that the angular cyano
group in 7 would serve as a latent functionality to introduce the crucial C-8 BH present in the steroid



nucleus. Thus this new approach to steroids would hinge on this key transformation.
Decarboethoxylation of 7 gave the cyano ketone 8 (mp 234-236 °C) in 65% yield. Reaction of 8 with
excess Lill in NH3 afforded alcohol 9 (mp 187-188 °C; 91%), after chromatography. The excellent
yield of 912 substantiates the use of the CN group for the introduction of the crucial C-8 BH. Alcohol 9
was converted to d,/-11 by two standard reactions. Thus ozonolysis of 9 and subsequent reduction of
the resulting ozonide with Me2S gave ketone 10 (mp 206.4-207 °C, 84%) which upon oxidation with
Jones reagent yielded d,/-11 (mp 214-216 °C; 95%).

The stereochemistry shown in 10 and 11 is consistent with the following observations. The
angular methyl groups in 4,/-10 (C-18 Me, & 1.08; C-19 Me, 8 0.82) have comparable chemical shifts
to that of the known angular methyl shifts (C-18 Me, & 1.10; C-19 Me, 3 0.81) observed in 5a-D-
homoandrostane-3f-hydroxy-17a-one.!3 Similarly the angular methyl groups in d,/-11 (C-18 Me. §
1.11; C-19 Me, & 1.07) are comparable to the angular methy] shifts (C-18 Me, & 1.14; C-19 Me, & 1.04)
observed for 5a-D-homoandrostane-3,17a-dione.14 The 13C chemical shifts of the angular methyl
groups in 11 are also identical to those reported for Sa-D-homoandrostane-3,17a-dione. 15

Scheme II

*LiCl, wet DMSO, A; P exccess Li, NHs, - 33 °C 4.5h; then EtOH; © 03, CHCly,
MeOH, -78 °C; then MeS, -78 °C -> 1t, ovemight; ¢ Jones oxidation, 0 °C, acetone.

In summary this study illustrates a highly stereoselective radical approach to homosteroids.
The application of this methodology to the synthesis of natural steroids should be highly plausible.
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